Multifunctional “smart” particles with magnetic, topographic, cell-targeting, and stimulus-responsive properties are obtained using a “live template” strategy. These particles exhibit improved efficiency in capture of target cancer cells by introducing synergistic topographic interaction, and enable the release of captured cells with high viability via reduction of disulfide bonds. Diverse multifunctional particles could be designed using the “live template” strategy. Advanced Materials, 2014 Release of captured cells via cleavable disulfide bonds. Evaluation of specificity of MSPs. |