We report an experimental study on widely tunable terahertz (THz) wave difference frequencygeneration (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ∼1.3 μm double-pass KTiOPO4optical parametric oscillator. A tuning range of 0.02–20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process was demonstrated. The photon conversion efficiency could reach 2.9%. Applied Physics Letters, 2015 Schematic diagram of the experimental setup for THz DFG with OH1 crystals. |